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1. Introduction

For a periodic functiorL ,(T) Ul'yanov [UI] proved the now classical inequalities

1/
qdu} 1 1.1
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an

1/q
d
Iflly<C { u oy, u)p)q ﬂ + ||f||p} , (1.2)

wheref) = % L and 1< p < ¢ < oo. (For ¢ = oo a variation of the above was shown.)

Extensive use was made of the Nikol'skii inequality for trigonometric polynomials of
degreen, 1,

Q|

1_1
ltally <Cnr~4|t,ll, where O< p<g<oo. (1.3)

In[De-Lo, p. 181, Theorem 3.4].1) is proved in a differentway wit” ( £, 1) , replacing
w(f, ), (Which is an improvement) and with 1 replacig@n the right-hand side of (1.1)
(which is weaker), and the result is attributedBe-Ri-Sh]who authored it.

Ul'yanov’s result was also extended to the tofifs There was some effort to extend the
result tow, (f, 1), (see[Ky]), but it involved rearrangements, and while this does work
for the extension of (1.2), the modulus of smoothness of a rearrangement may be much
smaller than that of the function, and hence leads to a weaker result. To our knowledge,
the result for O< p < 1 was not proved in any of the cases. In Sectipwe present the
Ul'yanov-type result fom,,(T"), 0 < p<g<oocandin SectiorBfor L ,[—1, 1]in relation
to i, (f,1)p, 0 < p < g<oo. We remark on different aspects of the theorems and give
some examples of their use. This should be the incentive for the investigation of general
results given in Sectiod. In Section5 those general results will be applied to prove the
theorems of Sectiorsand3. In Sectiorb we will make some comments on the Nikol'skii-
type inequality. In Sectioid the analogous results dr, (R) will be described and proved.

In SectiorBthe results for best polynomial approximation on simple polytopes are given for
L,(S). The Ul'yanov-type inequality related to approximation with Freud weights will be
given in Sectior®. Results oiK-functionals that measure smoothness on the sphere will be
given in Sectiorll0. Results on weighted approximation with Jacobi weights will be given
in Sectionl1. Finally, we mention the paper of Tim@fi,M], whose nice proof influenced

the proof of the crucial Lemmé.2in this paper.

2. Ul'yanov-type inequality for Lp(Td), O<p<g<oo

The result of this section is summarized in the following two theorems and will be the
model for other results in the paper.

Theorem 2.1. For f € Lp(Td), 0 < p < g <oowe have for any integer>1

t 1/q1
o (f,)g<C {/ (u‘o "(f,u) )ql du} (2.1)
0 u

and

1 /g
—0 r q1 du
||f||Lqm><C“/o (- torcrm,)" 5} +||f||L,,<Td>] (22
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, < 0
whereg = {4 92 0=a (1)

and

r r 2 2 1/2
of (frw0)p = SUPL I, Fl, oy 1l = (W3 4+ +43) " <l

@ = (A7) and Auf () = o) = f(). (23)

The meaning of (2.1) and (2.2) is that when either of the integrals on the rigBt-f (
and of (2.2) (which are well-defined g5e LP(T")) converges, our theorem implies that
f e Lq(Td), and the inequality in question ((2.1) @.R)) is valid. This will be a theme
throughout the paper (and will not be commented on again).

In case the reader is puzzled by the jump frgra co to g = oo, we observe that this
is a common occurrence except when only the weaker result ysiegl whenevey > 1
is proved.

Remark 2.2. The benefit of considering” (f, 1), rather than onlyo(f, 1), (that is, with
r = 1) becomes evident as

o' (f,u)p = o(ue), u— 0+ (2.4)

is a necessary condition for the integrals on the right of (2.1) and (2.2) to converge, and
for r + max(% - 1,0)<d(% - g) = 0 (2.4) will imply " (f,u), = 0 (in other words

f = constant). Summarizing the abover #- max(z — 1,0)<d(3 — 1), the inequalities
(2.1) and (2.2) are trivial, as either the right-hand side divefgeso), and is therefore

bigger than the left-hand side, or both sides equal zero.
We also prove the following result.

Theorem 2.3. For f € L,(T%),0 < p < g<oo we have

00 1/q1
E,(f)q<C {Z k9L, (f)‘,%l} (2.5)
k=n
and
00 1/q1
1flg<C [{Z k9101 gy (f);’f} + ||f||p} : (2.6)
k=1
_J4 g<x _ 11
whereql_{l’ =00 0_d<1—,—5),
Ex (f), =min(|lf — Tkllp: Tx € Tx) (2.7)
and

Ti = spane™; ki <k, IKlle., <k} (2.8)
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We note thaff; can be replaced by
77 = spanfe™; kg, <k, p>1

and the difference will be only in the constabin (2.5) and (2.6).

As in Theoren®.1, the meaning of (2.5) and (2.6) is that if the sum on the right of either
will converge, thery e L,,(Td), and the inequality in question is valid. This understanding
will apply to sums in subsequent sections as well.

We further note that as Theorerfisl and 2.3 serve as a model for our further inves-
tigations, it is important that we emphasize Theor2®, as in several cases, analogues
of Theorem2.1 are not available but analogues of Theor2r@are. This happens when
a proper alternative fan'"(f, 1), eludes us, or when the Jackson-type inequality and the
realization result are not known for sompe

3. Ul'yanov-type result usingw{l,(f, tp and Lp[—-1, 1]

For f € L,[—1, 1] best polynomial approximation ia, andw;,(f, 1)p, the Ul'yanov-
type inequality is given in the following theorem.

Theorem 3.1. For f € L,[-1,1],0< p < g <oo we have for any integer>1

t 1/q1
- —0 - q1 du
ol (f.1)g<C (/O (w ety (fo0,) 7) : (3.1)
1 B q1 du Ya
Il -1,u<C |:{f (u Oty (f, M)p) —} + 1Sl 111 (3.2)
0 u
00 1/q1
En(f)q<C !Z k0L (f)(,{vl} : (3-3)
k=n
and
[od] 1/q1
Il -1u<C {Z I (f)(le} + 1L, -1 | (3.4)
k=1
_J4 qg<x —2(1_1
won= [ 1<% 023 3)
wfp(‘fa 1)y = sup ”AZ(p.f”Lp[fl,l] (3.5)

[hl <t
with

r _ k r Z B z B
0 otherwise

’
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®=pkx) =v1-x2

and

E,(f)p =inf (I f = Pllz,i-1.15: P isapolynomial of degree)n (3.6)

Remark 3.2. To give examples, we note thatjfix) = (1 — x2)~1/2, simple calculations
(see alsdDi-To, pp. 34-35]) show thab,(f, 1)1 = O(t|logt|) andwé(f, )1 = O0(t),
and either estimate implies via (3.2) thite L, for ¢ < 2 but does not imply that

f € L. Infact, f ¢ L, and this shows thdt = 2 (% — %) cannot be improved. Further, if

fx) = A=x)"Y8 0, (f, 01 = 0@) andwf, (f, )1 = 0(*3). Using (3.2) withr = 1,
we getf e L, only forg < 2, but using (3.2) withr = 2, we havef € L, for g < 3,
which shows the advantage of using- 1 in our theorem. It is clear that ¢ L3[—1,1].
Finally, for f(x) = (1 — x%~?|log(1 — x?)|", we havewZ (f, 1)1 = O(z|logt|”). We
sety = —1 and (3.2) withy1 = 2 impliesf € Ly[—1, 1], as is in fact the case. However, if
we used (3.2) witly; = 1 (instead of;1 = 2), we could not have deducede L>[—1, 1],
which shows the benefit of using the powgr= ¢ (and not 1),in estimates (3.1)—(3.4).

We note here that in the above examples we could have @sBgl (3.3) or 8.4) to show
the benefits of the different parameters, but we chose (3.2) for simplicity.

4. Ul'yanov-type result, general framework

Let L, ., (D) be the collection of functions ob satisfying

1/p
Iy =1flc,., > = {/D Ifl”de} <00 (4.1)

for the givenp, 0 < p < co whereD is a measurable set andx) > 0 except perhaps on
the boundary oD which is of measure.ONe also set as usudl € Lo (D) = Loo(D).
We note that in the applications of the above given in this pdpevill be T, T¢, R,
[—1,1], a simple polytope or the sphere; and the weilghtill most times bew(x) = 1,
but we will also use Freud’s weight d® the Jacobi weight of+-1, 1] or on the simplex.
In the following {A}sc0 is a collection of linear subspacesbf ,, (D) with O C Ry
satisfying

As C L, w(D) forallce O, A; C Ay for o<oy (4.2)

and | J Asisdensein., ., (D),0< p < oco.
aeO
In applications we will write4,, when O is the set of positive integers, for example

when discussing trigonometric polynomials Bror T¢, algebraic polynomials of total de-
green and spherical polynomials of degreeWe can also havel, with ¢ € O, which
has a continuous parametelike exponential functions of type on R. It can be noted
that in the applications below when we specify tBatc N and, we write4,,, A, will be
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a finite-dimensional space (not necessarigimensional), butd, whenO = [a, co) will
not necessarily be finite-dimensional.

Definition 4.1. The collection{ A;},c» belongs to the Nikol'skii clasa/(p) if

B_p
lellL, o) <Co? dllolL,,m» foreeAs,
O0<p<g<oo andall o€O. 4.3)

It is understood that fof.A,} to belong toA () Cin (4.3) is independent of € O but
may depend op andg.
Definition 4.2. The rate of best approximation is
Es(f)p=inf If —olL,.o)> (4.4)
peA,
and the best approximant, from A, tofin L, ,, (D) is given by

log — fllL,..0) = Ec(f)p- (4.5)

In the following we will assume that the best approximant exists fer p < co. In all
applications below the existence and uniquenesg,adre achieved for < p < co. We
note that for the purpose of the proof, however, the existence of a near best approximant

06 = fllL,.c0) SAEG(f)p, (4.5)

whereA does not depend o is sufficient.
We are now able to state and prove the general analogue of Theddamd inequalities
(3.3) and (3.4).

Theorem 4.1. For f € L, (D), 0 < p < g<oo, acollection of linear spacesgl; that
belong toN () (that is,satisfying(4.3)), we have in casel, is given for allo € [1, 00)
(O =11,00))

00 1/q1
Es(f)y<C { / v10-1E, ( f)‘,f,ldv} (4.6)
o
and
00 -1 1/q1
Ifllg<C {/1 vIUTHE, (f)?fdv} + 1l 4.7)
., 0 . .
whereq; = ;1_ g zg: *® and 0= ﬁ(% — ql> Similarly, if © = N and A,

belongs ta\V'(f), we have

00 1/q
En(f)g<C {Z k0L Ey (f);él} (4.6)

k=n
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and

00 1/q
nfm<c{§:wﬁlamﬁ?} + 1S |- 4.7y

k=1
We need the following crucial lemma:

Lemma 4.2. Under the conditions of Theorefnl and with¢, of (4.5)or (4.5)

m 1/q1
<C <Z (025D E s f)p)ql> (4.8)
q

(=1

m
Z (Pg2t — Pgat-1)
=1

with C = C(p, ¢, f) independent of m.

We will use (4.8) with a generat € [1,00) or with ¢ = n or ¢ = 1 on different
occasions.

Proof. Forg <1 (g1 = q) we write

m

Z ((100'2( - (szk—l)

=1

q m
< Z ||Q00—213 - (:002‘5_1”2
g =1

BGz=1a
(aZZ) R [P

a
NE

<
¢

Il
N

JHETEY
02‘) PN E 1 ().

a
Ms
—~

<

o~
Il
N

Forg >1 andg; = 1, we write

m m
((P0'2( - (101725—1) < Z H Poot — Pgat-1 Hq
=1 g =1
= bG35
<Cc) (028) B P 8
=1
g bG35
<20y (azf) P Bt (),
(=1

In fact, we needj; = 1 only forg = oo but the above can provide an easier proof of
Theoremd.1if g1 = 1 is assumed fog > 1. To complete the proof we need to settle the
case 1< g < oo andg1 = ¢, which is the hard part. We follow the idea of the proof in
[Ti,M]. We setn, = 1,(x) = |@gs0t(x) — @so-1(x)|, and choosing = [¢] + 1 (recall
1< g < ), we have
m

I(m) = (Po2t — Poa-1)

=1

q
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/AN /AN
I
— —
M= 1M
= =
S ~
? SN—
~—— =
S \Iil
| I | 2
= =
Ry

1/q

We note that

r r—1
(n an> = 1_[ aiaj for r>1
n=1

1<i<j<r

which follows from the observation that on the right-hand side eugrgppears exactly
r — 1 times. Hence we obtain

/-1 /4

I(m)< Z Z/ nt! il w

l1=1 b= l<z<]<r

We now use the extended (or generalized) Holder inequalityZ3e€9.8), p. 18Jor[He-St,
13.26, p. 200]) given by

n
/g1~-~gn<||g1||1/xl~-~||gn||1/a,,, % >0, » o=L1

This implies withey = 25 wherek = 1, = 2D 'k corresponds to the pair

r(r

r(r i(r

(i, j)i < jordered IeX|cograph|caIIy angk = 1y, 6

Im)< Z Z I (/ ng/znz/2w>r<» iy

(=11<i<j<r

1/q

We defineJ (¢;, £;) by
J(ei,e,)E/ ng/ 2w

To estimate/ (¢;, £;) we use the Holder inequality with powers= % ando/ = 24
(a7t + (&)~ = 1) and write

(p-é—q)q r/(p+q) ptq q/(p+q)
Tl )< <f na w) </ 0 w> :
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Observing thay, = 2524 > pandgs = 252 > p, we recall thaty, € A,
e, € A _ot;, and using Nikol'skii's inequality, we obtain

q/2

q3

N ) pA_L
<c[(oz‘f) " g 02 qs’nne,up}

1_1 1_1 q/2 G=p)p
— C |:(O_2€i>/j(p 11) ”’7(”[7 <02£j>/j(l7 ‘1) ||’/I[||p:| . (2([,‘-1{]')) 2(p+q) )
i J

Symmetry betweenandj in J(¢;, £;) allows us to exchangeandj if ¢; > £; and replace
(Z(Zi_lj))(q_P)ﬁ/z([H'LI) by (2_|£j _li|)(q_[7)ﬁ/2([7+q)_ Hence we have

11
I(m) < C Z Z I1 <(o-2€i)ﬁ(” " g

=1 | 1<i<j<r

J(Kl ’ el) || 7’[, |q/2 ” ’76/

q/2

1 1/q
r(r=1)
(q=p)B

INCE) - =41
X(O’2 N ”W}”P) 2 Pt+q

We use the identity

1—[ aga,2” lei—ely _ 1—[ r— 11—[2 |65 —Ek|y/2

1<i<j<r s=1

forag, >0, 1<s<r andy > 0.
Setting

6\B(5—3) T
at, = (@2, 1)

. (g=p)B ;
and/ = m, we obtain

1(m) < C1 Z Z]_[((gzﬁ.v)/“%—%ﬂlngIIp)q/r
: : s=1

r 1/q
<I1 2—|es—ek|<q—p>ﬂ/(2(p+q>r(r—1)>} _
k=1

We recall the extended (or generalized) Holder inequality for sumgZ4se€9.8), p. 18]
or [He-St, 13.26, p. 200]) given by

oy

o1
Z ay(1)---ay(r)< (Z |av(1)|°‘11) (Z Iav(r)|11r> ,

v

.
whereoy > 0and)_ o = 1.
k=1



Z. Ditzian, S. Tikhonov / Journal of Approximation Theory 133 (2005) 100—-133 109

m m
We now use this with the sun}_ --- > (with vis (¢4, ..., ¢,) ordered lexicographi-
l1=1 l1=1

cally) and withay = £ to obtain

1(m) < € ]‘[ Z Z(um Ip(e2y/G=0)

s=1 | ¢1=1 =1
. 1/r\ /4
X l_[ 2—|/3x—ffklﬂ(q—p)/(Z(p-s-q)(r—l))
k=1

We now observe that atlfactors of the product of the last expression are equal and the
common value is

Am = | 3 (025Dl 1)’

01=1
1/r
m m r
xS Y [ 2t @1
=1 f,=1k=1
By the inequality
m o0
Y 2Tl N 27 = () Ve eN, >0
=1 (=0
we have
IR | e VR o | i
=1 f=1k=1 = 6=1 k=2
r m
<TI L2 2| <con.
k=2 \{;=1

Therefore, we have
1(m) < C1(A(m))"4

m - 1/q
< C2 (Z (azfﬂ“p‘q)ﬂmﬂl%) :

=1

r=1
whereCs = C1 {C (%)} * which does not depend an.

Recallingl|n, |l , <2E ;pc-1(f) p, we complete the proof. (]

Proof of Theorem 4.1. As | J A, (or | J A,) is dense inL, ., (D), we choosep, or ¢,
by (4.5) andg,on — @, of @,on — @, tends inL,, and therefore in measure locally, to
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f — o, of f — ¢, respectively. If the best approximant does not exist, we choose a near
best approximant as described(#h5) before the statement of Theoretril with a fixed
constanA (A = 2 for example). While such a situation does not occur in the applications
given in this paper, we did not want to burden any theorem with an extra condition. Hence,
if convergence can be shownlin, @ on — @ Or @,on — @, tendsinL, ,(D)to f — ¢,

or f — ¢, respectively forf € L, (D). Using Lemmad.2, we have

1f = @ally < M l@gzn — @llg
m

= lim
m—0o0

(@2‘(7 - @25*10‘)
=1

q

m 1.1 q 1/q1

< leinoo (Z ((0_26>ﬁ([% ;) Eo_zz—l(f)p> 1)

e_
00 11 g1\ Var

<C (Z <(azf)ﬁ(" ")Eo,z“(f),,> ) .

Monotonicity of E;(f), or E,(f), implies that the last sum is bounded by the right-hand
side of (4.6) or (4.8)for anyas or n. We note that when proving (4.7) @t.{), we uses = 1
orn=1.

To prove ¢.7) we witel| flly <11 £ = g1l + Il pyly for g =L andi £1f < ([ £ = ¢a!

+| (p1}|3> for 0 < ¢ < 1, and complete the proof observing thjgt; ||, < C||¢4 |l , with C
of the Nikol'skii inequality and| @4 ||, <II f — @1llp, + 1 fll, <E(f)p + I fll, for p=1
while 1" < | f = @) + 115 SEL ()} + 111 for0< p < 1.

Finally, (4.6) or (4.6)follows from the above estimates afig (f), <Al f — ¢,ll4 OF
E (g <Alf —@yllg- U

For the general form of the Ul'yanov-type result one needs also the following two theo-
rems. We will use these theorems in the proof of Theor2rhand3.1as well as for many
results in subsequent sections.

In the following two theorems various Jackson and Bernstein-type inequalities as well as
realization results will be used. These, together with the Nikolskii-type inequality used in
Theoremd.1, are crucial for the setup needed for proving the full analogue of the Ul'yanov
type inequality.

Theorem 4.3. Suppose in addition to the assumptions in Theofebthere exists an in-
creasing function ofi0, 1] Q( f, ¢) satisfying

Es(f)p<CQ (f, 1) forall oe[l,00) orall eN. (4.9)
c/,
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Thenfor0 < p < g<©

B 1 ad 1/q1
I1flly <Ca { / («"cs.0,) —”} +1£1p (4.10)
0 u
or
(o o 1\ 41 1/q1
Iflly<ce| 1Y kaf-10 (f, E) + 1710 (4.10)
| k=1
. _Jq for g<oo _pf1 1
Wlthql_{l for ¢ = oo and 9_/3<p q).

Proof. We substitute (4.9) irA.7) and change variable= % Or just substitute (4.9) with
6 = kin (4.7) to obtain (4.10) O

We observe thatthe Jackson-type inequality (4.9) is assumed only fpiroties theorem
and relates only to that. In applications usually if a Jackson-type inequality is proved for
p, similar results follow forp; satisfy p < p1 < oo.

Minor modifications to (4.10) and (4.10Vill be necessary if in (4.9y € [a, o) or
o € N with ¢ >r is assumed respectively.

The final part of the Ul'yanov-type result was separated because some additional condi-
tions were still needed, and we attempted to separate the conditions so that it is clear which
conditions are needed for which part of the result. In many applications all these conditions
are satisfied.

Theorem 4.4. Suppose in addition to the assumptions of Theorethand4.3we have an
increasing functio(f, 1), = Q’(f,1)4, t € (0, 0o) satisfying

” 1 )
Q (f, ;) SC(If = @gllg + 77 P(05)q) (4.11)
q

foro € O, ¢, € Ay and a seminorngfor ¢ >1) or quasi seminornffor 0 < g < 1)
D(¢,),. We suppose further that

D(p,), <Ca" T P D(p,), for ceO, g, A (4.12)
and that fore,, satisfying(4.5)

T D(@,), <CQ (f, %) =CQ <f, %) , (4.13)
P

P

where Cinbotl{4.12)and(4.13)is independent of. Thenforr <1 (or ¢ = ,—1lwhen(9 =N)

q1 du }1/41

2t
v4 _0 Y
Q (f,t)q§C{/O (u Q(f,u)p> o (4.14)
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where

_|gq for 0<g<o0 . 1 1
ql_{l for ¢ = oo and 0_ﬂ<p 7)

In applications we will have

?UP ”Pﬁ(D)(pa”p = (I)((po')ps (415)
cek
whereZ is a set which most times will be a singleton (see Sectpiis9-11), sometimes a
finite set (see Sectid3) and sometimes even an uncountable set flike( ¢ € RY . |¢ =1}
andP:(D) = (6_66)r in Section5). The linear operatoP: (D) will represent in most cases
a differential operator. It may represent an operator related to a differential operatﬁf like
or a fractional power of a differential operator for example.

We observe that the Jackson-type result is still assumed only feee (4.9)) and that
the same is true for the more difficult part of the realization result, tha#is3}. What
is usually the easy direction of a realization result, tha#i4X), is assumed only far.
However, in the applications given in this paper results 1k®), (4.11)—(4.13) and others
are valid for a wide range qf andq with more properties than required. We could have
replaced the range of the integration in (4.14) by |0f we made further easy assumptions
onQY(f,1),.

Proof. Toestimat&’(f, 1), using (4.11)any, € A, willdo, and we choose,, satisfying
(4.5). Following the proof of Theored 1 with the ¢, that satisfies (4.5), we get

1/ . @ du 1/
||fcpg||q<c{/ (' fw),) } :
0 u

To estimate the second term we combine (4.12) with (4.13) and obtain
1 1
7 D(p,)g < Ca a0 0(g,),
< CGﬁ(%*%)Q/ (f’ E)
p

g

2/a a1 du 1/q1
c 00y (¥, e ,
1, (o))

which completes the proof.[]

N

5. Trigonometric and algebraic polynomials in Lp(Td) and Lp[—1, 1] respectively

In this section we prove Theorerfisl,2.3and3.1, which are the model and motivation
for other results of this paper.

Proof of Theorem 2.3. We use Theorem.1in which we setL, ,,(D) = L,,(T"), 0=
N, A, = 7, with 7, of (2.8) andf = d. We note that assumption (4.3) that is made in
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Theorem4. 1, that isd,, € N (f) now takes the form

di-1
ITlly, ey SCn'S™ONT N, ). O< p<q<oe, T,eT, (5.1)

which is the classical Nikol'skii inequality (see fordp <oo [Ni] and forO< p < 1

[De-Lo, p. 102]). The density of trigonometric polynomialsli[,;(T"), 0< p <xisalso
well-established. Therefore, all the assumptions of Theatdnare fulfilled in this setup
and we obtain Theorex3. O

Proof of Theorem 2.1. We will use Theoremd.3and4.4to prove (2.2) and (2.1) respec-
tively. We set in both theorent®' (£, 1), = @’ (f, 1), (for qas well) withaw' (£, ), given
by (2.3). We recall the classical Jackson-type estimate

En(f)p<Cw’<f,%) , O0<p<oo (5.2)
P

with E,,(f), of (2.7). Inequality (5.2) is4.9) of Theorem4.3in our case. Therefore, the
conditions in Theorem.3are satisfied and (2.2) follows from (4.10).
To prove @.1) we note that for any,, € 7, and O< g <oo

o (f, g < o (f — Ty, t)g +60r(Tnvt)q
<a )r :|
AL T;‘l 5
¢
q

which is (4.11) withy = r and®(7;,), = sup | P;(D)T,l, = sup| (%)r T,|l, (see also
¢ g N

C |:||f — Tallg +1" sup
¢

(4.15)). As(ﬁ)r T, € To if T, € Ty, (4.12) is satisfied witv = n, y = r, f = d and

P:(D) = ( ) Inequality (4.13) follows from the equivalence given by the realization

result
( a )r
65 "
p

which is valid for 0 < p<oo and7, satisfying| f — T,ll, = E.(f),. We note that
sometimes the realization result is written as (see for the one-dimensiongDiad$elv,

Theorem 3.1])
o)) e

which is equivalent to (5.3). This follows since if the infimum of (5.8)approached by
T f = Tl , < Co' (f, 1),, and hence witly = min(p, 1)

1 .
o' (f, ;) ~NSf = Tallp +n sup . (5.3)
P

n€/n

1 .
o” (f;) ~ inf (||f Tl +n~" sup
p

17— 771 <(nf—T||“+||f—T*||“)”“<er(f 1)
n nllpx nllp nllp X I .
p
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Using the above and the Bernstein inequality, we have

s T, <n s (1, — Tn )
) ", %

1

< Co" (f, —) .
n

p

The extension dDi-Hr-lv, Theorem 3.1from the one-dimensional to tlledimensional
case is completely routine using%)’ T, instead ofT,f’) there. We now have the assumptions
of Theoremé.4and hence (2.1) follows. O

1/a

o o

—r a ' *
' (%) =
r

+
p

Proof of Theorem 3.1. We use Theorem.1to establish (3.3) and (3.4) and Theoref3
and4.4 to demonstrate (3.2) and (3.1) respectively. We set in Theerdni, ,,(D) =
L,[-1,1], A, = II, wherell,, is the collection of polynomials of degreen, andf = 2.
The well-known Nikol'skii-type inequality

2(1_1
1Pl —1.0<Cr? P~ | Pyl 1—11,  Po€ Iy, 0<p<g<oo (5.4)

is given in[De-Lo, p. 102 (2.14)]. Therefore, Theoretriis applicable, and we have (3.3)
and (3.4). We set, in addition to the abo®8( f, 1), = wfp(f, Hpwithy =r andwfp(f, Dp
of (3.5). The Jackson-type result

En(f)pgcw:p(fvt)pv 0<p<oo (55)

was proved ifDi-To, p. 79, Theorem 7.2.1for 1< p <oo and in[De-Le-Yu] (with the
needed (5.6) of [Di-Hr-lvjsee comment there) for @ p < 1. Therefore (4.10) implies
(3.2). Toprove (3.1) we setin (4.1By(D) = P(D) = (p’(dd—x)r. Clearly, foroe. = min(p, 1)

r r o r o 1/a
wq;(fat)q< a)qg(f_Pmt)q‘Fw(p(Pns[)q s

and as o, (f — Put)g <CIf — Pully and ol (Py.0)y < Ct'llg" P, (see
[Di-To, Chapter 7ffor 1< g < oo and[Di-Hr-lv, Section 6]for 0 < ¢ < 1), we have

(£ 0 <CL(IF = Pally + 11197 Py ) (5.6)
which is (4.11) for our setup. For even
2i_1
lo" POl L, 1,0 <Cn? P~ 10" PN -1y (5.7)
is satisfied since (5.4) is satisfied aptlP,” e II,,. For oddr we usep; = S,q1=%and

(5.7) follows from
r 2 r
lo" Pall, = l0® Pllgy
L _L
Can* 7w o P2,

<
1_1
<1 (n*0 I Pal2).
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We would like to mention that the observation above on (5.7) fomaddue to D. Leviatan
and is simpler than our original proof. To complete the proof we recall [Beélr-lv,
Theorem 5.1]) that

. 1 _
wy, <f7 n) ~ N f = Palle,—1n+n "Il PN, —1.1) (5.8)
p

with P, satisfyingE, (f), = | f — PullL,-1.1)-

While in Theorem 5.1 ofDi-Hr-1v] an infimum on allP, € I, is written, this infimum
can be dropped in the same manner as was done in the prabfipf\(Ve now have all the
ingredients of Theorem.4and hence (3.1) is proved with thstead ot on the right hand
side. As

o, (f,26)p <Cay (f, 1), (5.9)

which follows from[Di-To] for 1< p < oo and from[Di-Hr-lv, (5.13)]for0 < p < 1, we
have the result (3.1) as stated.]

6. Nikol'skii-type inequalities

In earlier sections we used the Nikol'skii inequalities which were given in the literature.
In this section, we will make some observations which will help us extend the range of
some Nikol'skii-type inequalities and prove some new ones.

It can be observed, as is clear from the proof of some special casgbéske, p. 102],
[Ne-Wi,Gr-Sa], and others), that the case(p <2, p < ¢ < oo follows essentially from
the casep = 2 andg = oo. We formalize this point in the following theorem and proof
which we hope will be helpful as some authors are still squeamish when haridjing
0 < p < 1, which for the Nikol'skii inequality is the easy case.

Theorem 6.1. Let A, (or A,) be a class of functions on a measurable Besuch that
As C Lo (D) andw(x) is a measurable weight function satisfyingx) > 0 ae. onD.
Suppose further that

loll, .oy <r@Y?loll,,,p» foral ¢eA,. (6.1)
Then for0 < p<2and p <¢g <oo we have
1_1
”‘/’”Lq,u,(D) < (Yo))r ||§0||L[,_W(D)- (6.2)

Proof. Clearly,p € A; isin Ly by (6.1). If o € L, (D), thenp € L, (D) for
0< p<g<oo,whileif ¢ ¢ L, (6.2) s trivial. We write

1/2
lollz = (f |qo|2wdx)
D
) 1/2
= (f (101 %101%) wdx)
D
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15, 5
< lolloo “llellp
_P 14
= lellielle ol
P P
1/2 -2 2
<@ llel2llell? i3

or

1
[@llco <y(@) 7@l
We complete the proof following the Holder-inequality fer< g < oo to obtain

175 g 1_1
lelly, < el ™ llollp <y@r 4 llell,. 0

In most cases(o) = co® (or y(n) = cn®), but other functions occur as well. In the
above theorem and proof the assumption and the conclusion are about one oTgie.
However, as the knowledgeable reader understands, we usually make the assumption on a
continuous collection of classes; or a sequence of classéls, and the conclusion is on
these classes.

For p > 2 the method traditionally used can be summarized in the following general
result.

Theorem 6.2. Suppose a collection of classds C L2 ., (D) (or A, C L2,(D)), and
assumé6.1)is valid for thoses (or n). Suppose furthep € A, (or ¢ € A,) implies for
any integer rp” € A, (or 9" € A,,). Thenfor0 < p<g<oo

4
2 K

WV

i1
lele, o)< @ro)? < llel,, @, for r reN. (6.3)

We note that ify(c) = (ca)? (or y(n) = (cn)P), y(ra) = (cro)P tends to infinity when
p does. We observe that while in examples we know A, or ¢ € A, impliesg” € Ay,
or¢” € A,,, an assumption like € A, implies¢” € A, for some fixednwould yield
the similar inequality

, reN. (6.3)

NS

1_1
lollL, @ <ymro)r dlelL,, o for r=

Proof. The casep <2 was already settled in Theoresrl. To prove §.3) forp > 2 we
choose an integer> £ and write

1/2
112 = ( [ 1o wax)
) 12
= ([ (1or#101%)" wax )

=4 118
<ol ? ol 2
p
2

— 4
= ol lels® el -
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Using (6.1) fore” € Ay, we have

5 5ol
lplld < (ern? llgll; .

and hence fop <g <ocowith r > %,

11
lelg<y(@r)r algll,. O

As it turns out in many cases (most of those we know), the inclusienrothe constant
is not necessary. This happens when de la Vallée Poussin-type operators are available.

Definition 6.1. For a collection of classed, wheres € N or o € [a, oo) for somea > 0,
a collection of linear operatorg, are called delayed means or de la Vallée Poussin-type
operators if the following conditions are satisfied:

L Vefllp<MIfllp, YfeLpw®), 1<p<oo,
II. Ve = ¢@fore e Ag,
. V,f e Ars for some finite integek independent of.

We can now state and prove a Nikol'skii-type result without resortingtd; given in
(6.3) and to the assumption @i in Theorem6.2. We write the theorem fod,,, but it is
valid for A, as well.

Theorem 6.3. LetA,, Az, € L, .,(D)andforbothA4, andA;, (6.1)be satisfied. Suppose

also that there exisy, satisfyingl, Il andlll of Definition6.1 with the prescribed M and
L. Thenfor2 < p<g< oo

11
”(/)”Lq,w(D) <M (y(Ln))r 4 ||(P||Lp1w(1))y ¢ €A, (6.4)
with M and L of Definitior6.1.

We remark that combining (6.2) and (6.4), we may write fat p < g < oo andgp € A,

11 11
lollL, o)< maxym)r—a, My(Ln)?~)ll¢lL, ,D)- (6.4Y
Proof. For2< p < g we have
IVafllg<MIfllg, Va=T:Lg—> Lg OF [[Valgq<M,

and using (6.2) ford,, we have

1

Vi llg < GEL)YET Vi fla<M ((Ln))2 77 | £,

11
Vi=T:La— Ly or [[Vyllog<M(y(Ln))2 4.
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We now use the Riesz—Thorin Theorem ﬁo& 2+ (1;“) , that is,% _i_y (% - l)
and obtain

X [x(%_l) . 1_1
Vo fllg <M (y(Ln)) A fllp =M QL) a1 fllp.
For ¢ € A, we haveV,, ¢ = ¢ and hence (6.4) is satisfied[J

The last theorem (observation) is useful and can be applied in various situations. As an
example, we present the following corollary.

Corollary 6.4. For T, a trigonometric polynomial of degree n dhand0 < p<g<oo
we have

11
ITullL,my <3n? @ Tyl ,m, n=l (6.5)

Proof. We recall for p<2, p<g<oo it is known [De-Lo, p. 102] that ||T,]l; <

1.1

(B2)7 " Tl
We setV,, f = 202, f — 0, f (the classical de la Vallée Poussin operator) which satisfies

Definition 6.1 withL = 2 andM = 3.As(25tt) <n and®5tt <nforn>1, (6.4) implies

6.5). O

We note that for large (6.5) is superior to the traditional res{iDe-Lo, p. 102], that is,

1

nr+ 1 P

1_1
P 4q
) 1T:1lp, O0< p<g<oo, r>2 and r e N.

2
1Tnllg < (

While in this paper we will not need the improvement over (6.3) given in (6.4), we believe

thatitis a worthwhile observation and note that it is applicable to trigonometric and algebraic

polynomials ind variablesd > 1, to spherical harmonics, and to many other situations.
Perhaps the following generalizations of {hee-Wi] result can demonstrate the benefit

of Theorems.1and6.3.

Theorem 6.5. For a functionG ¢ (x), x € R? given by

1\9/2 '
Gg(x) = (—) / g(&)e'* dé, (6.6)
2n K
whereg € L,(K) and K is a measurable set R, we have
(K)\7 "4
m r q
IG kI, ey < (W) Gk, ®ty 0<PpP<2 p<g<oo. (6.7)

Ifin additionK C I, =[—0, 0] x --- X [—0, d], we have
1_1
Gk, ey <(ca)?P 4Gkl jey, 0<p<g<oo (6.8)

with ¢ independent of p and g.
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In an analogue of Theoref5given in[Ne-Wi] it is assumed tha is compact, convex
and symmetric. We note that being compact is not needed for (6.7), and being convex and
symmetric is not needed for (6.8). Also, the constant situation in (6.8) is better than in
[Ne-Wi] as we do not resortt6 ¢ < A; impliesG’; € A, but use Theorem 6.3 instead.
However, if the constant was of no concern, we could have deduced (6.3)NieiWi].

Proof. Using the Cauchy—Schwartz inequality, we have

1/2
m(K)
||GK||LOC(Rd)<<7> llgllLock)-

Definingg(&) = 0 for ¢ ¢ K, we have

llgllzo k) = ”g”Lz(R‘l) = ”GK”Lz(Rd)’

and hence we have an inequality of type (6.1) which, using The6r&mmplies (6.7). We
need to prove (6.8) only fop > 2 as it is weaker than (6.7) for< 2.

We setH;(x;) = 710 (‘T—é) which satisfyf_"go H;(x;)dx; = 1, and we note that

H / Hy(ei) f (y — x) doxi

<IIflis
B

(wherex, y € R, x = (x1, ..., xj,...xg) holds forB = L1(RY) andB = L., (R?), and
hence it holds foB = L,,(Rd) for all 1< p <oo. Therefore,

oo o0 d
Vo f(y) = / / [ | @Has(xi) = Ho(xi)) f(y — x)dx1...dxa
- X =1

satisfies
Vo FllL, ey <3, ey for 1<p<oc.

For Gk given by 6.6) whereK C I, we haveV,Gg = Gg. For f € La(RY), Vefisa
Fourier transform of a function i, supported byz,. As V, f € Lo(R%), and using (6.7)
with p = 2,9 > 2 andK = I»,;, we have

==

1
(20)d 2
Vo fll Ly(ra)-

[ Vaf”Lq(Rtl) < (W

From the above consideration and Theo&B) we haveg.8). [

For polynomials with Jacobi weights on the cube we have the following result.

d
Theorem 6.6. Supposer = w, g(x) = [] Wy, B, (xpH)forx eIy =[-1,1]x---x[-1,1]
i=1

wherew,, 5 (x;) = (1—x))% A+x)Pi, 0; > =1, > —Lai+f; > —La= (a1, ..., %),
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f=Pq, ..., andx = (x1,...,x4). Then for0 < p<q < oo we have

Si_1
I PallLy s < cn’ | P, Ly (La)s (6.9)

d
wherey = Y~ max(2+ 2 maxa, f;), 1) and P, a polynomial of total degree n.
i=1
In particular, if w(x) = 1, we have foll < p<g <o
1_

1PullL, (1 <Cn2G 2| Py | (6.9)
nllL, (1) SN nllLy(lg)- :

Proof. Using Theorem$.1and6.2, it is sufficient to prove (6.9) with = co andp = 2.
(We could have used TheorerBto improve the constant, but the constructiorVpivould
lead us too far from the topic.) A polynomial of total degr€e is of degree<n in each
variable, and hence

Py(y)

_ 1 1 d n @B N @B

= | P o [1>° o @nel ™ (i | dxy...dxa,
- a i=1 k=0

where 0@-F) (x;) is the orthonormal system of polynomials ¢r1,1] with weight
wy, g, (x;). Therefore, using the Cauchy—Schwartz inequality, we have

1Pl Los,, plta) = IPnllLostia)
4 /on N\ 142
(o, ,')
<Pallza, iia sup | TT (X (2" o)
»b =1<y; <1 |
155t Lizt \k=o0

d n 1/2

LA (]"[ >, sup (Q,i“"”*')(yi)f)

i=1 k=0 ~1S¥i<

We use Szégo estimatesgf“’ﬂ)(é), ¢ e[-1,1],[Sz, (7.32.2), p. 166]
C1k* J=maxa, f)> — 3

Ck>
C1k=12 ) = max, ) < —g S
and recall the relation betwee‘?;f“’ﬂ)(cf) and Q,((‘“’ﬁ)(i) which follows from[Sz, (4.3.3),
p. 68],

max | PP (&))< {

105P@&1<cak PP ), k=1,

where bothC; andC> are independent &. Therefore, setting = y;,

n .
. o) 5 C3 <1+ Z k2A+1> <C4n2)'+2, A} o %
sup (") < o ,
io ~tsn<t C3 <1+ > 1) <Can, J< -1
k=1

which implies (6.9). O
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Partial results of the above theorem were known (BseRa]). We will use parts of
Theorem6.6in some of the following sections.

Remark 6.7. The powery in (6.9) is sharp at least when max, ;) > — % as can be seen

d n
wheng = oo, p = 2 andP,(x) = [] 3 e(k, i)Q,((ai'ﬁi)(X) with e(k, i) = 1if o; > f;
i=1 k=0
ands(k, i) = (=1 if p; > ;. (The fact thatP, (x) is of total degreend does not make a
difference.)

7. Ul'yanov-type inequality on R

For the Ul'yanov result ofr (without weight) we use the collection of linear spagks

defined byG, € Ay if

Gor) = — [ (&) dé, gel (7.1)

X) = —F— e ) ) .
g m Y g > g 2

that is, the collection of exponential functions of tygpeT he rate of best approximation in
L ,(R) is given by

EO’(f)p = mf{”f - Ga||Lp(R)§ Gy € Asl. (7-2)
The moduli of smoothness are defined as usual by

' (f.)p = lilup 1AL fllL,Rys  Anf(x) = flx+h) = fx),
<t

A, = Ay (AT, (7.3)
The inequalities are given in the following theorem.

Theorem 7.1. For f € L,(R), 0 < p < g <oo, we have

00 0 do 1/q1
I £z, <C { /1 ot Ea<f);£17} 1 fle,® | (7.4)
00 d 1/q
Eq(flg<C {/ quoEn(f)(ff#} ; (7.5)
1 ) d 1/q1
1/, <C “ NG, —”} + ||f||L,,(R>} (7.6)
0 u
and
t 1/q
o (f, ey <C {/ (u—owr(f, u)p)‘/l d_u} , 7.7)
0 u
whereg; = 611 Z z ;’2 , 0= (% — %) Eq(f), is given by(7.2)and o’ (f, u), is

given by(7.3).
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Proof. The Nikol'skii inequality

11
1GsllL,r <Co? ¢ |GsllL,r)» O<p<sg<oo, Gs€Ag (7.8)

is well-known, and in fact fop > 1 goes back to Nikol'skii (sefNi, Ne-Wi]). Therefore,
Theoremd.limplies (7.4) and (7.5). The Jackson inequality was proved by Tabjgiaki
for0 < p < 1 and was known earlier ford p < oco. This implies (7.6) using Theoreh3.

The realization resu[Di-Hr-lv, Section 4]was given by

1
r - ~ i _ =) <
o (1 a)p inf, (I = Gollp + 07 IGYN,) . 0< p<oc, (7.9

c€Ag

and using the argument deriving (5.3) from (58)d the Jackson-type estimate here, we
derive

1 _
o’ (f, E) X f = Gollp+ 071G, (7.9)
p

where||Gs — fll, = Ec(f)p (O 1Gs — fllp SAEG(f))p)-
We now use (7.9) foL., with G, given by||Gs— f ||, = Es(f) toyieldthe appropriate
form of (4.11) here. We then use the Jackson estimate

1
Eq(f)p<Co” (f, —) ;
g p
which is of the form of (4.9) here. Using (7.9)ve obtain

G

O_—r

1
<Cor (f, —> for 1Ge— fll, = Eo(f)p.
p o P

which is what we need for (4.12). This completes the assembly of all ingredients needed
for the proof of (7.7). O

For the multidimensional analogue we do not have the appropriate Jackson and realization
results for the range & p < oco. However, as a corollary of Theorefnl, we can state and
prove the following theorem. (We can also prove a partial analogue of (7.6) and (7.7) for
1<p < g<).

Theorem 7.2. Supposef € Lp(Rd) and0 < p < g<oo.Then

OO 0 qlda Ha
”f”Lq(Rd)<C {A ot Ea(f)p 7} + ”f”L,,(Rd) (710)

and

o0

d /¢
Eo(f)g<C { / nql@En(f)?#} (7.11)
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, < 0
wheregy = {4 9 2%0 0=a(3-1),

Eo(f)y gay =10 (ILf = Goll, i Go € As).

andG, € Ay if

1 d o 4 o
Go(x) = (E) / / e Cg(Odéy ... dEy,

x,éeR? and ge Ly

Proof. The results follow immediately from Theoreml and the Nikol'skii inequality
[Ti,A, p. 235 [34]]and[Ne-Wi]. O

8. Approximation by polynomials on simple polytopes

Aregion S ¢ R is a simple polytope if it is a polytope (convex hull of finitely many
points) which has an interior point and whose vertices are connected to adjacent vertices
by exactlyd edges. The best rate of approximation is given by

En,S(f)p =inf (”f - Pn”Lp(S); Pn € Hn) s (81)

wherell, is the collection of polynomials of total degreen. The moduli of smoothness
we use is

5 (.00 =SUp(IA) oL, hI<t 1E =1, E€ Es), reN,  (82)
whereEy is the set of edges o,

P02 =ds(x, &) = inf d(r,x+28) inf d(e.x—20), (8.3)
° x+ACE x—/iLe
>0 2>0

d(x, y) is the Euclidean distance betweeandy and

Azf(x):{ké)(;;)(—l)kf(x—i—(%—k)u) for x:I:%ueS,

0 otherwise.

Best approximation as well as moduli of smoothness for diffefgits) are related by
the following theorem.

Theorem 8.1. Suppose S is a simple polytogee L ,(S) and0 < p < g <oo. Then

00 1/q1
1 ll,5 <C “Z kqlo_lEk,S(f)(;zl} + ||f||L,,(S):| : (8.4)

k=1
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00 /g1
Eys(flg<C {Z kqle_lEk,S(f)?}] . (8.5)
k=n
1 a1 du Yan
Ifll, ) <C |:{/ (M_G(Drs(f, M)p) —} + 1 fllL, (8.6)
0 u
and
. t,o a1 du | Y%
o5(f, )y <C {/ (u ng(f, u)p) —} , (8.7)
0 u
4, q<o0 ]
whereg; = 1 g=oo" 0=2d (% - %) and whereE, s(f), andw(f, 1), are

given by(8.1)and(8.2), respectively.

For the proof of Theorer8.1we have most of the necessary ingredients. However, an
essential inequality, that is, the appropriate Nikol'skii-type inequality is missing and will
be given in the following lemma.

Lemma 8.2. For a simple polytope $§ ¢ R and0 < p <¢ < oo we have

2d(-1)
I PullL, sy SCn™ "7 7| PyllL,(s) (8.8)
whereP, is a polynomial of total degree n and C depends on S and p but not orPj. or

Proof of Lemma 8.2. Forthe BoxB = [—1, 1] x - - - x[—1, 1]the inequality of our lemma
is (6.9). For an affine transformation of the Bd the result is still valid, and we have

1_1 pgi-1y
I Palle, By <CII(A) P an™"r 7| PyllL,(By)

where J(A) is the Jacobian of the affine transformation. In cased)| <1 we replace

[J(A)] Tt by 1, and otherwise b/ (A)| 71), and hence our constant depend<anf (6.9),
onpand onB4. A simple polytope can be covered by a finite numbeBgf C S, that is

L
S c U By, and hence
i=1

L
1Pullycs) < D I1PullLysa)
i=1

L
20(i_1 1 1
< Cn® TN TP Pl 84,
=1

< Cn¥ G T(A)7 77| P
n P 4 max IV
< C1 1<i<L| (ADIP TN PullL,Ba))

2d(L_1
< Cn® ‘f)IIPnIILp(S)- O
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Proof of Theorem 8.1. Using the definitions, Lemma&.2 and Theoremd.1, we obtain
(8.4) and (8.5). We now use (4.1) and (4.3) of [Di,l, Theorem 4.1, p. &2ferive the
Jackson-type inequality

En,S(f)p < ng‘(f’ t)[’

which, using Theoremd.3, implies (8.6). We use (4.2) of [Di,l, Theorem 4uith L, to
get the appropriate (4.11) with, the bestL ,(S) approximant td. We note that here we

use in (4.15)
AN
q)f 8_5 Pn
: q

with & = Eg. We recall that<p5(x)2 and (P—i)r P, (x) are polynomials (for any), and
hence we use the Nikol'skii inequality of LemrB2with p1 = £ andq; = % to get

r 2 r 2
() |, = (@) )
E\N Az n 14 Az n
<\ o¢ L,®) ¢ .
2
0 r
q)ér ((8_6) Pn)

®(P,)g = sup||Pz(D)P,lly = sup

telE (eEy

Ly (S)

The above implies
() r () *
Pe PY: n P PY: n
which is the appropriate form of (4.12) here. To obtain the inequality
r 6 ' 7 1
e\ =z ) Pa <Coy| f =
¢ n/,

for P, satisfying|| f — P,ll, = E,.(f), we use (4.4) of [Di,I, Theorem 4.1]. This implies
(8.7) with 2 on the right, which can be restoredttasing again (4.3) of [Di,I]. O

2d(1-1
<Cn <” ‘1) sup
Ly(S) (eEg

sup
EeEs

)

Lp(S)

n~" sup
CeEs

Lp(9)

9. Ul'yanov-type inequalities, Freud’s weights

Freud’s weights are given by

wo(s) = wx) = exp(—=0(x))

with some conditions o (x). There are many different versions of these conditions, as
can be seen ifDi-Lu, p. 101, Definition 1.1][Di-To, p. 101, Definition 11.2.1][Le-Lu,
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p. 10, Definition 1.2and[Mh, p. 47, Definition 3.1.1]. All these definitions have in common
one thing: they are based on the prototype

w(x) = wy(x) = exp(—|x|*), o> 1. (9.1)

As different results which we need here are based on different definitions, and as dealing
with Freud’s weights is not the main subject here, we deal only wittx). This simplifies
the description ofl of Theoremdl.1,4.3and4.4as well as guarantees that all the ingredients
needed for the use of these theorems are valid. That is, for these weights, the Nikol’skii and
Jackson-type inequalities as well as the realization result were proved earlier.

We define the moduli of smoothness followifigj-Lu, (1.11), (1.15) and (1.16 )y

wy(f, Bp =o' (f, wy, Dp

= Sup ||w0(A2f”Lp[x;|x|<h1/1_“]
O<h <t

+ Pei%t_l ”(f - P)U)g(”Lp[x;lX‘}tl/l—o(], r € N. (92)

In [Di-To, 11.2.2, p. 182]somewhat different moduli of smoothness are defined for
1< p<oo; however, we need (9.2) as we want the moduli to be defined for0< 1 as
well. The best weighted rate of approximation is given by

En(fap = inf (”wu(f - Pn)”Lp(R); P, € Hn) ) (9.3)

which is a somewhat different expression than (4.4), and as a result of it, we will have to
be careful when proving the theorem of this section.

Theorem 9.1. For 0 < p < g <oo and forwy, E,(f)q, andw}(f, 1), given by(9.1),
(9.3)and(9.2) respectively we have

e’} 1/‘]1
lwafllz,®<C {Z k‘ﬂ“Ek(f)Z,lp} +llwe fllz,® | (9.4)
k=1
00 1/
En<f>u,q<c{2 k‘ﬂ”‘lEk<f)§,1,,} : (9.5)
k=n
1 @ dI/t 1/(11
lwe fllL,Rr <C {/O (™l (fu)p) 7} + llwa fllL,®) (9.6)
and
t " du 1/q1
w;(f,r)qgc{/o (™l (fu)p) 7} , 9.7)

_Jg g<o _a=1lg 4 _1 1
Whefefh—{l g=00" 0= " (;—Z)andn—;—a.
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Proof. We use the Nikol'skii-type inequality proved by Nevai and Tdtle-To], that is

a=1c1_1
1Pawsll Ry <Cpgn = 70 | Pawglp, w) 98)

for P, € 11, 0 < p<g<ooandoa > 1. As in the Nikol'skii-type inequality used, not
f e LywR) butw,f e L,(R) (or Ly(R)), we can follow Lemmat.2 where the only
place of change is when the Nikol'skii inequality is utilized and we have instead of (4.8)
m

(Pnze - Pnze—l) Wy
=1

Ly(R)

m Ll(;fl) q1\ /a1
<C(Z ((nz‘f) A Enzll(f)oc,p) )

(=1

where P, is best (or near best) approximatefto

Following now the proof of Theorerh 1, we have4.4) and (9.5). We now use the Jackson
inequality, whichis part dDi-Lu, Theorem 1.2], together wiffdi-Lu, Theorem 1.4, (1.24)]
to obtain

En(Pap<Cof (fin37?) . (9.9)

We now obtain (9.6) when we write

e
e[B (@7 Pz )]

=1
1 a—1(1 1 y— q1 1/511
ol [ () 4
0 p v
1 11 q1 d 1/611
<c2{/ CRCAN —”} :
0 u

To prove 0.7) we use [Di-Lu, Theorem 1.4¢ write for all 0 < p < oo (includingq)

N

1 . 1_9\"
wy (f,nri)pmplg7 (”(f_Pn)wO(”LF(R)+ (n“ 1) ”Pn(r)wa(”Lp(R)) (9.10)

aswl(f,1)p is o, ,(f, wy, 1) Of [Di-Lu], and on the right hand side of (9.10) we have
Ky p(f wy, ") with t = ni—l (recall (1.23) ofl Di-Lu]). Therefore, forP, satisfying

(P — f)wa”Lp(R) = En(f)ot,p (9.11)

we have

ot (f.057Y) < (ICf = Powall, @ + (n571) 1P wy] (9.12)
o ) q X n o Lq(R) n o Lq(R) ) .
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which is the needed analogue of (4.11).12;%) is also a polynomial, the analogue of (4.12)
is the Nikol'skii inequality proved by Nevai and Totik (s@¢e-To]). We now use (9.10)
(for p this time) and recall that the same argument that allowed us to change frofrtd5.3)
(5.3) implies here (since (9.9) was established)Hpsatisfying (9.11)

1 19\
wy (f, ni 1>p ~ (= Powallz,®) + (i“ 1) 1P wallL,®)- (9.13)
and hence
14\ 1
(w5 ) 1P i, < e (o 1)p, (9.14)

which takes the place of (4.13). Therefore, we have the ingredients prescribed in THebrem
and we obtain (9.7). O

10. Smoothness on the sphere and spherical harmonics
The unit sphereS,;_1 c R? is given by

Sd—l:[xGRd; |X|2=x]2_+~~~+x5=1},

The eigenspace of spherical harmonics of deg@risagiven by

Ho={p: Ap = —k(k+d—1)p}, Af(x)=Af (&) : (10.1)

whereA is the Laplace—Beltrami operator ands the Laplacian. The rate of best approx-
imation is given by

Eq(f), = inf (IIf — ol @€ Span{ U Hk}> . (10.2)

k=0

We have the following result:

Theorem 10.1. Supposef € L,(S4-1),0 < p < g<oo.Then

o0 1/
£y ssn <C “Z kgql—lEk<f);’,l} + ||f||Lp<sd_1>} (10.3)
k=1
and
00 1/q
E,(f)q<C {Z keql—lEk(f)‘;f} : (10.4)
k=n

q, g <X

whereg; = { 1. g=o0

and 9=(d—1)(%—§).
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Proof. The Nikol'skii inequality for 0< p<g <oo

d-1
||Pn||Lq(sd,1)<Cn( G- ")||P IL,80), Pn€ span{U Hk} (10.5)
k=1

was proved in Lemma 7.4 §Be-Da-Di], and hence Theoremlimplies our theorem. (I

Actually (10.5) for 1< p < g < oo was proved by KamzolojKa], and using Theorer@. 1
here, this implies (10.5).
The smoothness can be given by Kéunctional

K(,Z,tz’) - inf ( — gl e + 2 1A gl s, ) 10.6
r S P eeC(Sy 1) /=gl p(Sa-1) 1A gll p(Sa-1) ( )
for 1< p <oco. We can now state and prove an analogue of the Ul'yanov inequality.

Theorem 10.2.For f € L,(S4-1), 1< p < g <oo we have for integer > 1

L 0 ~ o.\91 du a
1 ey <C { / K, (1. A, u®) —} +fleysin | (107)
0 p u

and
~ ! 0 ~ o du | M
K (f.A%) <c {/ w1k, (f. A ) —} , (10.8)
q 0 p u
whereg; = { z Z z z , 0=d-1) (% — %) andK, (£, A, ¥ is given by(10.6).

Proof. We set in Theorem4.3and4.4
Q(f.0, = (f.0), = K, (£.A17)

p

We used(g), = ||Z rg“Lp(Sd—l). The Jackson-type theorem, which is the needed condition
(4.9), was proved ifCh-Di, Theorem 8.1, (8.8)], and hence we complete the proof of (10.7).

The appropriate form of (4.11) with,, € span{ Lnj Hk} satisfying|| P, — fllL,(s,.1) =
E,(f)p is animmediate consequence of the (;e_f(i)nitiom(p(f Z tzr)q as aK-functional.
Since forgp € span{ U Hk}, Agp € span{ U Hk} the necessary (4.12) is just (10.5). To
establish (4.13) we use [Ch-Di, Theorem 8 2, (8.14&}h our notations. Therefore, (10.8)

follows. O

We could have used in Theoref0.2 one of the many moduli of smoothness in
RustamovRu] which are equivalent to thK-functional in (10.6), but they, like thK-
functional, cannot be defined for@ p < 1. A recently introduced set of modyDi,ll]
can be defined for & p < oo, but while there are many results about it, we do not have the
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appropriate form of (4.9) and (4.13) for® p < 1, and hence using it would not improve
the range of Theorer0.2.

11. Jacobi weights

For the cubel; = [—1,1] x --- x [—1, 1] the rate of best-weighted approximation is
given by

Ea(Fp =0 (ILf = Pall iy, yiays Pa € 1) (11.1)

wherell, is the class of polynomials of total degreen,
d
wy p() = [ wap, ). way p, (i) = A= x)" A+ xp)fi
i=1

ande; > —1, f; > —1. We have now the following corollary of Theorefr.

Theorem 11.1. Supposef € Lpw,gllal, o > 1,0 >—-1,0+f; >—-1and0 < p <
g <oo.Then

[e’s) /¢
IIfIILq_uWud] <C LZl ke‘“lEk(f)?f} + IIfIIL,,,wl_,,[Id] (11.2)
and
00 1/q1
Ey(f)g<C iz kg‘“_lEk(f)%l} ; (11.3)
k=n
where
q {‘7 4= ando <1 1) Xd:max(Z—i—Z maxs;, f;), 1)
1= =\—- - ir Pi)» .
1 q = o0 p q i

Proof. Using the Nikol'skii-type inequality in Theore.6 and Theoremt.1, we obtain
the present result. (]

For the analogue of the Ul'yanov result here we have the one-dimensional case for
1< p<oo. TheK-functional is given by

Ke (F Pup(D).1) =0 (If = gll,i-a1+ 1 1P g(DY gl 1.1

(11.4)
whereax > -1, f > —1 and
_ Y a2y B 4
PupD) = T o i ((1 21— 0*1+x) )dx. (11.5)
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Theorem 11.2. Supposef € Ly, ,[—1,1],a+ > —1,0> -1, > —landl<p <
g <oo. Then for any integer > 1

1 dl/t 1/111
< —q10 ﬁ 2\ 91 “r
||f||Lq’wa</§[_1'1] X C |:{/(;) u K] (fv PO’,[)’(D)a u )p u
+||f||L,,.w1‘/}[—1,1]:| (11.6)
and
t d 1/q1
K, (£, Pp(D). %) <C { | w k(£ Pap0ra)” —”} SNCER)
q 0 p u
where

_l4 a<oo _(1_1
C”_{l, = oo (9_<p q)max(2+2ma>(oc,ﬁ),1),

andK, (f, Py p(D), tzr)p is given by(11.4).
Proof. We set in Theorem4.3and4.4

D[y = 7 (f.0p = K (f. Pup(D). 1)
We use her®(P,), = | Py, p(D) PullL,—1.13 Pn € I1,,. The Jackson-type estimate, which

is the needed inequality (4.9), was proved@h-Di, (5.22)]for « andf as prescribed, and
hence we have (11.6). The appropriate form of (4.11) is an immediate consequence of the
definition of K, (f, Py p(D), tzr)q as given (forq instead ofp) by (11.4). The necessary
inequality (4.12) is the Nikol'skii-type inequality (Theorem 6.6 for the special case dealt
with here) sinceP, s(D)P, € I, if P, € II,. To establish (4.13) we note that it is in
[Ch-Di, Theorem 5.6, A]. Therefore, we have (11.7)]

12. Concluding remarks

Itis clear that many theorems in this paper could be extended if the ingredients in former
papers were extended. In particular, this applies to Sectiethidto varying degrees. We
would like also to conjecture a simple Ul'yanov-type result for which the methods of this

paper do not seem to be appropriate.

Conjecture. For a domainI” ¢ R? satisfying some simple restrictio(say for instance
I' = {x; |x|<1})and0 < p < g <<oo one has

1 0 dl/i 1/‘11
I fllL,an<C {/o u o' (f, M)%17} + I1F L,y (12.1)
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and
) 4 du | Yn
o' (f,)g<C { / u‘“gwr(f,u)%l} . (12.2)

0 u

where

q g <00 1 1) ’ r
1= ., O0=(=—=—=)d and o' (f, 1), = sup A, flL,a)-
1 {1 q =00 <P q ! |h\<pr CAZEE

While probably special cases of the above are known or easy to prove, we would applaud
a result of the type that is valid fgr > 0, ¢1 # 1 andd > 1.
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